Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
نویسندگان
چکیده مقاله:
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. Based on this formulation, a solitary solution can be easily obtained using the Ritz method. The Kudryashov method is used to construct exact solutions of the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. Moreover, it is observed that the suggested techniques are compatible with the physical nature of such problems.
منابع مشابه
Applications of He′s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the timefractional Klein-Gordon equation, and the time-fractional HirotaSatsuma coupled KdV system. The Hes semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply Hes semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the timefractional Hirota...
متن کاملSolving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
متن کاملOptimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations
We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by min...
متن کاملThe Modified Fractional Sub-equation Method and Its Applications to Nonlinear Fractional Partial Differential Equations
It is well known that fractional differential equations appeared more and more frequently in different research areas, such as fluid mechanics, viscoelasticity, biology, physics, engineering and other areas of science [1-30]. Considerable attention have been spent in recent years to develop techniques to look for solutions of nonlinear fractional partial differential equations (NFPDEs). Consequ...
متن کاملThe Improved Fractional Sub-equation Method and Its Applications to Nonlinear Fractional Partial Differential Equations
The fractional derivatives in the sense of modified Riemann-Liouville derivative and the improved fractional sub-equation method are employed for constructing the exact solutions of nonlinear fractional partial differential equations. By means of this method, the space-time fractional generalized Hirota-Satsuma coupled Kortewegde Vries equations are successfully solved. As a result, three types...
متن کاملSolving time-fractional chemical engineering equations by modified variational iteration method as fixed point iteration method
The variational iteration method(VIM) was extended to find approximate solutions of fractional chemical engineering equations. The Lagrange multipliers of the VIM were not identified explicitly. In this paper we improve the VIM by using concept of fixed point iteration method. Then this method was implemented for solving system of the time fractional chemical engineering equations. The ob...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 2
صفحات 215- 225
تاریخ انتشار 2015-12-31
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023